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Abstract. We develop a general ‘classicalization’ procedure that links Hilbert-space and phase-
space operators, using Weyl’s operator. Then we transform the time-dependent Schrödinger
equation into a phase-space picture using free parameters. They include position Q and momentum
P . We expand the phase-space Hamiltonian in an h̄-Taylor series and fix parameters with the
condition that coefficients of h̄0, −ih̄1 ∂/∂Q and ih̄1 ∂/∂P vanish. This condition results in
generalized Hamilton equations and a natural link between classical and quantum dynamics, while
the quantum motion-equation remains exact. In this picture, the Schrödinger equation reduces in
the classical limit to a generalized Liouville equation for the quantum-mechanical system state.
We modify Glauber’s coherent states with a suitable phase factor S(Q,P, t) and use them to obtain
phase-space representations of quantum dynamics and quantum-mechanical quantities.

(Some figures in this article are in colour only in the electronic version; see www.iop.org)

1. Introduction

Many authors have investigated the reformulation of Hilbert-space quantum mechanics in terms
of classical phase space. The Weyl–Wigner–Moyal formalism associates a quantum state in
Hilbert-space with a real-valued function called the Wigner function [1–4]. This function is
only partially equivalent to classical distribution functions as it can assume negative values.
Although the Wigner function has proven useful to determine average values for a large class
of ordinary momentum and position functions, for some cases it gives incorrect results [5, 6].

Husimi [7] introduced a procedure to smooth the Wigner function using a Gaussian. It led
to the so-called Husimi or antinormal ordering function. Although this distribution function
is always positive, occasionally the operator’s phase-space c-number representatives may not
be well defined [4, 8].

While the Weyl–Wigner–Moyal and Husimi methods describe quantum mechanics in
terms of density operators, in this paper we will use state-vectors. We follow a more
conventional approach to relate different pictures to each other (e.g. Schrödinger, Heisenberg,
interaction), using quantum-mechanical transformation theory. Therefore, we introduce a
phase-space picture for the Schrödinger equation to explore the relationship between classical
and quantum dynamics (section 5). We will find that for a given quantum system the
corresponding classical system obeys the generalized Hamilton equations.

The basis of the proposed method is a general ‘classicalization’ procedure deduced in
the first part of this paper (sections 2–4). It directly connects a given function F(q̂, p̂, t)
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of non-commuting position and momentum operators, (q̂, p̂), with a corresponding phase-
space function F(Q,P, Q̆, P̆ , t) of suitable classical entities, (Q, P, Q̆, P̆ , t). To deduce the
‘classicalization’ method, we avoid using representation theory. Coherent-state representation
will only be used in the last part (section 6) where we replace kets by phase-space
wavefunctions.

There are several approaches for the ‘classicalization’, that is, for the problem of
constructing the classical counterpart of a quantum-mechanical system, and for the study of
the way in which the classical description can be obtained as a limiting form of the quantum-
mechanical one. The simplest connection between quantum and classical mechanics goes back
to Ehrenfest [9]. One approach, as investigated by Heslot [10], is to rewrite the Schrödinger
equation as a set of Hamilton equations using as ‘coordinates’ and ‘momenta’ the real and
imaginary parts of the expansion coefficients of the wavefunction over an orthonormal basis.
Other treatments [11, 12] establish that a quantum-mechanical system is exactly equivalent to a
large classical system that consists of two parts: the ordinary classical analogue of the original
quantum system and a subsystem consisting of an infinite number of additional classical degrees
of freedom. The coherent-state path-integral formalism and the stationary phase approximation
also lead to classical-like equations [13].

Another systematic approach to associating quantum mechanics with a classical system
is the so-called semiquantal dynamics, or squeezed state dynamics, which starts with the
variational restriction of the Schrödinger equation to a subspace of the full Hilbert-space, uses
generalized coherent states as a trial wavefunction, and obtains canonical equations of motion
for expectation values and quantum fluctuations [14–17]. The standard Heller semiclassical
dynamics of Gaussian wavepackets [18] arises as consistent truncations (in h̄) to semiquantal
dynamics.

2. Relationship between Hilbert-space and phase-space operators

Let us consider a quantum-mechanical system with f degrees of freedom and Hilbert-space
H. Identity, position and momentum operators are denoted by 1̂, q̂ = {q̂1, q̂2, . . . , q̂f } and
p̂ = {p̂1, p̂2, . . . , p̂f }. They satisfy canonical commutation relations, [q̂n, p̂m] = ih̄ 1̂ δnm,
for n,m = 1, 2, . . . , f . Henceforth the Hilbert-space operators acting in Hilbert-space H are
denoted by a caret ( ˆ ).

In H we define the phase-space (or Weyl) displacement operator D̂(Q, P ), and its inverse
D̂(−Q,−P), that can be decomposed as

D̂(−Q,−P) := exp

(
− i

h̄

(
P q̂ − Qp̂

))
(1a)

= w
− (Q, P/2) D̂

+
(Q, P ) = w

+
(Q, P/2) D̂− (Q, P ). (1b)

Here we use auxiliary operators,

D̂
+
(Q, P ) := exp

(
− i

h̄
P q̂

)
exp

(
i

h̄
Qp̂

)
(2a)

D̂− (Q, P ) := exp

(
i

h̄
Qp̂

)
exp

(
− i

h̄
P q̂

)
(2b)

and phase factors

w
±(Q, P ) := exp

(
± i

h̄
QP

)
. (3)
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In terms of equations (1a), (1b) and (2a), (2b), the adjoint equations are(
D̂± (Q, P )

)†
= D̂∓ (−Q∗,−P ∗)

(
D̂(−Q,−P)

)† = D̂(Q∗, P ∗) (4)

where the asterisk (*) indicates complex conjugation. The Weyl operator depends on
coordinates and momenta, Q = (Q1,Q2, . . . ,Qf ) and P = (P1, P2, . . . , Pf ), that are
free parameters and may be chosen as real or complex quantities in phase space �. If Q

and P are real (Q, P ) can be regarded as points in the 2f -dimensional real phase space
(� = R2f ). We can simplify the notation in this case by defining w(Q,P ) := w

+
(Q, P ) and

w∗(Q, P ) := w
− (Q, P ).

Operators acting in phase space � will be denoted by a circumflex ( ˘ ). Translations
in classical phase space � can be generated with classical (commuting) operators, Q̆ =
(Q̆1, Q̆2, . . . , Q̆f ) and P̆ = (P̆1, P̆2, . . . , P̆f ), that act on the space of smooth functions
on � and are defined by

Q̆n := ih̄∂/∂Pn P̆n := −ih̄∂/∂Qn

[
Q̆n, P̆m

] = 0 n,m = 1, 2, . . . , f. (5)

Now, for every function G(Q,P ) := G(Q,P ; q̂, p̂) and f -dimensional vectors a and b

(a and b independent of Q and P ) we have

exp

(
− i

h̄
bQ̆

)
exp

(
i

h̄
aP̆

)
G(Q,P ) = G(Q + a, P + b) (6)

which implies

exp

(
i

h̄
aP̆

)
D̂
+
(Q, P ) = D̂

+
(Q, P ) exp

(
i

h̄
ap̂

)
(7a)

exp

(
− i

h̄
aQ̆

)
D̂− (Q, P ) = D̂− (Q, P ) exp

(
− i

h̄
aq̂

)
. (7b)

In quantum mechanics we deal with functions of non-commuting operators q̂ and p̂. Now
we use the above identities to establish formal relationships between a given function of non-
commuting Hilbert operators (q̂, p̂) and the corresponding function of classical entities (Q, P ,
Q̆, P̆ ). For this purpose we do not use representation theory and avoid the so-called ordering
problem [20].

We begin by introducing a set of (N + 1) phase-space functions{
N

F(Q),
N−1
F (P ), . . . ,

2
F(P ),

1
F(Q),

0
F(P )

}

labelled with numbers on top. We assume that each function is expandable in a convergent
power series in Q or P . By convention, functions of Q are odd numbered and functions of
P are even numbered. We now define Hilbert operators, using the substitutions Q → q̂ and
P → p̂. They set up well defined bi-directional mappings that relate phase-space functions
to Hilbert-space operators:

2k+1
F
(
q̂
) ↔ 2k+1

F (Q)
2k
F
(
p̂
) ↔ 2k

F (P ).

Let us consider a general Hilbert-space operators constructed as products of functions of
q̂ and functions of p̂, namely

N

F
+
(q̂, p̂) :=




N

F(p̂) . . .
2
F(p̂)

1
F(q̂)

0
F(p̂) N even

N

F(q̂) . . .
2
F(p̂)

1
F(q̂)

0
F(p̂) N odd

(8a)
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and

N

F−
(q̂, p̂) :=




0
F(p̂)

1
F(q̂)

2
F(p̂) . . .

N

F (p̂) N even
0
F(p̂)

1
F(q̂)

2
F(p̂) . . .

N

F (q̂) N odd.
(8b)

We also consider general Hilbert-space operators constructed as

F±
(q̂, p̂) =

∞∑
N=0

[
2N
C
±

2N
F±
(q̂, p̂) +

2N+1
C
±

2N+1
F±

(q̂, p̂)

]
(9)

where coefficients
k

C
±

are real or complex quantities. Note that operators (8a) and (8b) have

been defined as an ordered product of functions of q̂ and p̂, without being ordered operators
(all q̂s to the left of all p̂s or vice versa).

Equations (7a) and (7b) are relevant as they enable us to deduce the following intertwining
relations for Hilbert-space and phase-space operators (see appendix A):

F
+
(Q, P, Q̆, P̆ ) D̂

+
(Q, P ) = D̂

+
(Q, P ) F

+
(q̂, p̂) (10a)

F−
(Q, P, Q̆, P̆ ) D̂− (Q, P ) = F−

(q̂, p̂) D̂− (Q, P ). (10b)

The essential role of operators D̂± (Q, P ) is to connect Hilbert-space operators F±
(q̂, p̂) with

corresponding phase-space operators F±
(Q, P, Q̆, P̆ ) and vice versa. Note that entities as

D̂± (Q, P ) play a double role:

(a) they act as Hilbert-space operators, since they depend of q̂ and p̂;
(b) they are also non-scalar functions in phase space �, because they are Q- and P dependent,

but q̂ and p̂ obey a non-commutative algebra.

The operators F±
(Q, P, Q̆, P̆ ) can act in both spaces (H and �).

Now we need to obtain explicit expressions for phase-space operators F±
(Q, P, Q̆, P̆ )

associated with (8a) and (8b). We start with equations (see appendix A)
2k
F−
(Q, P, P̆ ) D̂

+
(Q, P ) = D̂− (Q, P )

2k
F (p̂) (11a)

2k+1
F
+

(Q, P, Q̆) D̂− (Q, P ) = D̂
+
(Q, P )

2k+1
F (q̂). (11b)

2k
F
+
(Q, P, P̆ ) D̂− (Q, P ) = 2k

F
(
p̂
)
D̂
+
(Q, P ) (11c)

2k+1
F−

(Q, P, Q̆) D̂− (Q, P ) = 2k+1
F
(
q̂
)
D̂− (Q, P ) (11d)

Combining equations (8a) and (8b) and (11a) and (11b) we obtain

N

F
+
(Q, P, Q̆, P̆ ) :=




w
+
(Q, P )

N

F−
(Q, P, P̆ ) . . .

2
F−
(Q, P, P̆ )

× 1
F
+
(Q, P, Q̆)

0
F−
(Q, P, P̆ ) N even

N

F
+
(Q, P, Q̆) . . .

2
F−
(Q, P, P̆ )

× 1
F
+
(Q, P, Q̆)

0
F−
(Q, P, P̆ ) N odd

(12a)
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and

N

F−
(Q, P, Q̆, P̆ ) :=




w
− (Q, P )

N

F
+
(Q, P, P̆ ) . . .

2
F
+
(Q, P, P̆ )

× 1
F−
(Q, P, Q̆)

0
F
+
(Q, P, P̆ ) N even

N

F−
(Q, P, Q̆) . . .

2
F
+
(Q, P, P̆ )

× 1
F−
(Q, P, Q̆)

0
F
+
(Q, P, P̆ ) N odd

(12b)

where we have introduced the notation
2k+1
F±

(Q, P, Q̆) := w
± (Q, P )

2k+1
F (Q̆)

2k
F±
(Q, P, P̆ ) := w

± (Q, P )
2k
F (P̆ ). (12c)

In order to understand the fundamental relations (11a) and (11b) better, we recommend the
reader compares (8a) with (12a) and (8b) with (12b). In the first case, the action order of
Hilbert-space and phase-space operators is the same (see the number over the functions). In
the second case, the action order is inverted. Also note that although Q̆ and P̆ are phase-space
commuting operators, in (12a) and (12b) the order of the factors must be preserved due to
exponential functions w± (Q, P ). Observe that for even N extra factors w

+
(Q, P ) and w

− (Q, P )

are present at the right-hand side of (12a) and (12b). These factors allow equations (10a) and
(10b) to be correct independently of the value ofN (even or odd) and, therefore, equations (10a)
and (10b) are valid for general Hilbert-space operator (9).

3. Classical–quantum correspondence between operators

We call ‘classicalization’ the procedure that assigns to a Hilbert-space operator corresponding
classical functions (symbols). We could derive an infinite set of ‘classicalization’ schemes
from phase-space operators (12a) and (12b). To avoid the difference in (12a) and (12b) arising
from even and odd Ns, we introduce an arbitrary smooth phase-space function S(Q,P, t) and
define phase-space operators

Q̆±[S] := exp

[
± i

h̄
(QP − S(Q,P, t))

]
Q̆ exp

[
∓ i

h̄
(QP − S(Q,P, t))

]
= ±q(Q,P, t) + Q̆ (13a)

and

P̆±[S] := exp

[
∓ i

h̄
S(Q, P, t)

]
P̆ exp

[
± i

h̄
S(Q, P, t)

]
= ±p(Q,P, t) + P̆ (13b)

where we have introduced for convenience auxiliary functions

q(Q,P, t) := Q − ∂S(Q,P, t)/∂P p(Q,P, t) := ∂S(Q,P, t)/∂Q. (14)

Phase-space operators Q̆±[S] and ±P̆±[S] are canonical conjugate, because they satisfy
±[Q̆±[S], P̆±[S]

] = ih̄1̆. Q̆ and P̆ are commuting operators, i.e.
[
Q̆, P̆

] = 0. To simplify
the notation we write from now on q, p, Q̆±, and P̆± instead of q(Q,P, t), p(Q,P, t), Q̆±[S]
and P̆±[S].

We define the transformation
N

F±
(
Q̆±, P̆±, t

)
:= exp

[
∓ i

h̄
S(Q, P, t)

]
N

F±
(
Q,P, Q̆, P̆ , t

)
exp

[
± i

h̄
S(Q, P, t)

]
(15)
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where Hilbert-space operators and function S(Q,P, t) can depend explicitly on time t . Then,
using (12a) and (12b) and (13a) and (13b), we find for (15) the simple expression

N

F±
(
Q̆±, P̆±, t

) =



N

F
(
P̆±, t

)
. . .

2
F
(
P̆±, t

) 1
F
(
Q̆±, t

) 0
F
(
P̆±, t

)
N even

N

F
(
Q̆±, t

)
. . .

2
F
(
P̆±, t

) 1
F
(
Q̆±, t

) 0
F
(
P̆±, t

)
N odd.

(16)

Note that (16) can be derived from (8a) and (8b) by replacing operators q̂ and p̂ with phase-
space equivalents Q̆± and P̆± (i.e. q̂ ↔ Q̆± and p̂ ↔ P̆±) and by reversing the order of
the operator product for those with subscript minus (−) (compare (8b) and (16)). Different
‘classicalization’ schemes may now be constructed by suitable choices of S(Q,P, t), since
S(Q,P, t) is arbitrary.

4. Expansion of phase-space operators

In this section we derive an expansion for a function of Q̆+ or P̆+, and for products of operators,
like those at the right-hand side of (16). The starting point is the Taylor expansion

F(y + x) = exp (x∂/∂y) F (y) =
∞∑
ν=0

Fν(y) x
ν (17a)

where x and y are commuting entities, and the coefficients are given by

Fν(y) := 1

ν!
(∂/∂y)ν F (y). (17b)

Note we are using a multi-index notation, where ν is an ordered set (ν1, ν2, . . . , νf ), consisting
of f non-negative integers restricted by ν = ν1 + ν2 + · · · + νf and ν! = ν1!ν2! . . . νf !.

4.1. Functions of Q̆+ or P̆+

Even without knowing the form of function q(Q,P, t) in (14), we may decompose it as q =
q + X, where q = q(Q, t) is a P -independent function, and X(Q,P, t) := q − q. Similarly,
p = p + Y , where p = p(P, t) is a Q-independent function, and Y (Q,P, t) := p−p. Thus,
commutation relations [±q, Q̆] = [±p, P̆ ] = 0 allow us to express phase-space operators
present in (16) as

2k
F
(
P̆±, t

) = 2k
F
(±p + P̆ , t

) =
∞∑

m=0

2k
Fm

(±p, t
)(± Y + P̆

)m
(18)

2k+1
F
(
Q̆±, t

) = 2k+1
F
(±q + Q̆, t

) =
∞∑
n=0

2k+1
F n (±q, t)

(± X + Q̆
)n
. (19)

Hereafter, and for the purposes of the present paper, it will be sufficient to consider only
functions of operators Q̆+ and P̆+.

We proceed now to evaluate
(
X + Q̆

)n
. First, note that

Q̆X = XQ̆ + (Q̆X) P̆ Y = Y P̆ + (P̆ Y ) (20)

where the notation (Q̆X) indicates that the operator Q̆ acts only inside the parentheses; that
is, the whole entity (Q̆X) = ih̄∂X/∂P is a multiplication operator. Because of (20), for every
positive number n � 0 we get the generalized binomial expansion

(
X + Q̆

)n =
n∑

µ=0

XnµQ̆
µ. (21)
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The coefficients {Xnµ(Q,P, t), µ = 0, 1, 2, . . . , n} are functions of (Q, P, t), and we see that
X00 = 1, X10 = X, and X11 = 1.

At the left-hand side of (21) we write (· · ·)n as (· · ·)(· · ·)n−1, use (21) to expand (· · ·)n−1,
employ the first equation (20) in the form Q̆Xn−1,µ = Xn−1,µQ̆ + (Q̆Xn−1,µ), and put a sum
into the normal form (21) by means of a change of indices. In this way we find the recurrence
relation

Xn,µ = Xn−1,µ−1 + XXn−1,µ + (Q̆Xn−1,µ) (22)

where, by convention, Xn,µ = 0 if n � 0 and µ < 0, or n < µ. Moreover, we have Xn,n = 1,
for n � 0, and X10 = X. In particular, using (22) we obtain

Xn0 = Xn +
n−2∑
%=0

(Q̆Xn−%−1,0)X
% n � 2. (23)

Appendix B includes some coefficients Xnµ obtained by application of (23) and (22).
Inserting (21) into (19), and by using the identity

∞∑
n=0

n∑
µ=0

A(n,µ) =
∞∑

µ=0

∞∑
n=0

A(n + µ,µ) (24)

we obtain the expansion

2k+1
F
(
Q̆+, t

) =
∞∑

µ=0

2k+1
Fµ (Q,P, t)Q̆µ (25)

where the coefficients are functions given by

2k+1
Fµ (Q,P, t) :=

∞∑
n=0

2k+1
Fn+µ

(
q, t

)
Xn+µ,µ(Q, P, t). (26)

Quite analogously, and by noting (20), we establish for (18) the expansion

2k
F
(
P̆+, t

) =
∞∑
ν=0

2k
Fν(Q, P, t)P̆ ν (27)

with coefficients

2k
Fν(Q, P, t) :=

∞∑
m=0

2k
Fm+ν (p, t) Ym+ν,ν(Q, P, t). (28)

Coefficients Ymν obey equations similar to (23) and (22), but X → Y and Q̆ → P̆ .
In the next subsection we will consider expansions for an operator product, such as those

in (16). For this we need the Leibnitz rule,

P̆ nY =
n∑

ν=0

(
n

ν

)
(P̆ n−νY )P̆ ν (29)

and a similar expression for Q̆nX. Note that (29) is obtained by using (20) repeatedly.
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4.2. Generic form of a generalized Hamiltonian

As an example of (9), consider a quite general Hamiltonian

Ĥ (t) := H(q̂, p̂, t) = 0
F(p̂, t) +

1
F(q̂, t) +

2
F(p̂, t)

3
F(q̂, t) +

5
F(q̂, t)

4
F(p̂, t). (30)

Here, t is the time, and
2k+1
F (q̂, t) and

2k
F (p̂, t) are arbitrary functions of all position and

momentum operators, q̂ and p̂. (30) includes the standard Hamiltonian (kinetic energy plus
potential energy) as a particular case. It allows us, thus, to present the most relevant properties
of the herein proposed method. According to (16), and for an arbitrary smooth function
S(Q,P, t), the phase-space operator associated with Ĥ (t) := H(q̂, p̂, t) is given by

H
+

(
Q̆+, P̆+, t

) = 0
F(P̆+, t) +

1
F(Q̆+, t) +

2
F(P̆+, t)

3
F(Q̆+, t) +

5
F(Q̆+, t)

4
F(P̆+, t). (31)

By employing (25), (27), (29) and (24), we get the Taylor expansions

2
F
(
P̆+, t

) 3
F
(
Q̆+, t

) =
∞∑
ν=0

∞∑
µ=0

2, 3
F ν,µ (Q, P, t) P̆ νQ̆µ (32)

5
F
(
Q̆+, t

) 4
F
(
P̆+, t

) =
∞∑
ν=0

∞∑
µ=0

5, 4
F ν,µ(Q, P, t)P̆ νQ̆µ. (33)

Here, the coefficients are given by

2, 3
F ν,µ(Q, P, t) =

∞∑
n=0

(
n + ν

ν

)
2
Fn+ν(Q, P, t)

(
P̆ n

3
Fµ(Q,P, t)

)
(34)

and

5, 4
F ν,µ(Q, P, t) =

∞∑
n=0

(
n + µ

µ

)
5
Fn+µ(Q,P, t)

(
Q̆n

4
Fν(Q, P, t)

)
. (35)

Inserting (25), (27), (32), and (33) into (31) gives

H
+

(
Q̆+, P̆+, t

) =
∞∑
ν=0

0
Fν(Q, P, t)P̆ ν +

∞∑
µ=0

1
Fµ(Q,P, t)Q̆µ

+
∞∑
ν=0

∞∑
µ=0

[
2, 3
F ν,µ (Q, P, t) +

5, 4
F ν,µ(Q, P, t)

]
P̆ νQ̆µ. (36)

By a simple extension of the above results, for an arbitrary smooth phase-space function
S(Q,P, t) and a Hamiltonian Ĥ = H(q̂, p̂, t) of the form (9), we may assume the existence
of a phase-space representative (see (8a) and (16))

H
+

(
Q̆+, P̆+, t

) =
∞∑
ν=0

∞∑
µ=0

[
1

ν!µ!
Kνµ(Q,P, t)

]
P̆ νQ̆µ (37)

with suitable coefficients Kνµ(Q,P, t). The phase-space function K(Q,P, t) :=
K00(Q, P, t) can be interpreted as a generalized Hamiltonian associated with the classical
system that underlies, or that corresponds to, the quantum system described by Hilbert-space
Hamiltonian Ĥ = H(q̂, p̂, t) (see (9) or (31)). K(Q,P, t) is a function of coordinates Q and
momenta P , and it depends parametrically on time t . Note that all of the above relations are
exact and that we are not dealing with any semiclassical approximations (h̄ → 0).
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4.3. A particular choice of S(Q,P, t)

Let us consider a particular phase-space function, S(Q,P, t) = −s(t) − x(t)P + y(t)Q +
a(t)QP , where {s(t), x(t), y(t), a(t)} is an arbitrary set of functions that could be time
dependent. In this case, equation (14) gives q = x + (1 − a)Q and p = y + aP . Thus,
function S(Q,P, t) induces a set of well known quantization mappings, q̂ → Q̆+ = q + Q̆,
and p̂ → P̆+ = p + P̆ . Setting s(t) = x(t) = y(t) = 0, we obtain for a = −1, 0 and 1

2 the
Emch, van Hove and symmetric mappings, respectively [21, 22]. x(t), y(t), and a(t) are free
functions (or parameters) that induce different quantization schemes.

In addition, we have q = q, X = 0, p = p, and Y = 0. Since Xnn = 1 and Ynn = 1 (see
appendix B), equations (26) and (28) reduce to

2k+1
Fµ (Q,P, t) =

2k+1
Fµ (q, t),

2k
Fν(Q, P, t) =

2k
Fν (p, t). (38a)

Similarly, equations (34) and (35) become

2, 3
F ν,µ(Q, P, t) = 1

ν!µ!

∞∑
n=0

(λ23)
n (n + ν)!(n + µ)!

n!

2
Fn+ν(p, t)

3
Fn+µ(q, t) (38b)

5, 4
F ν,µ(Q, P, t) = 1

ν!µ!

∞∑
n=0

(λ54)
n (n + ν)!(n + µ)!

n!

4
Fn+ν(p, t)

5
Fn+µ(q, t) (38c)

where λ23 := −ih̄(1 − a), λ54 := ih̄a, and the coefficients Fν are given by (17b).
Using (38a)–(38c) in (36), we obtain

H
+

(
Q̆+, P̆+, t

) =
∞∑
ν=0

∞∑
µ=0

1

ν!µ!

((
1

a

∂

∂P

)ν ( 1

1 − a

∂

∂Q

)µ

K(Q,P, t)

)
P̆ νQ̆µ (39)

where the generalized Hamiltonian is given by

K(Q,P, t) = H+ (x + (1 − a)Q, y + aP, t) (40a)

with

H+(q, p, t) := 0
F(p, t) +

1
F(q, t) +

∞∑
r=0

(−ih̄(1 − a))r r!
2
F r(p, t)

3
F r(q, t)

+
∞∑
r=0

(ih̄a)r r!
5
F r(q, t)

4
F r(p, t). (40b)

Observe that K(Q,P, t) depends on h̄, except for the standard Hamiltonian,
0
F(p, t)+

1
F(q, t).

5. Phase-space form of the Schrödinger equation

Let us apply the herein proposed ‘classicalization’ method to the Schrödinger equation. For
a system with Hamiltonian H(q̂, p̂, t) and initial state |ψ(t0)〉, this equation describes the
time evolution of quantum-mechanical state |ψ(t)〉. Among the infinite number of ways in
which the quantum dynamics can be formulated (Heisenberg, interaction, etc), we define a
phase-space picture by the transformation

|ψ+(Q, P, t)〉 := exp

(
− i

h̄
S(Q, P, t)

)
D̂
+
(Q, P ) |ψ(t)〉 (41)

where S(Q,P, t) is an arbitrary smooth phase-space function. We assume that free parameters
Q and P are either time dependent (subsection 5.1) or time independent (subsection 5.2).
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5.1. Time-dependent parameters Q(t) and P(t)

Let Q and P be differentiable functions of time t , i.e. Q(t) and P(t). From now on we denote
the position and momentum initial values as Q0 := Q(t0) and P0 := P(t0). To find the
equation of motion for ket |ψ+(Q, P, t)〉, we use the relation

ih̄
d

dt
D̂
+
(Q, P ) = D̂

+
(Q, P )

[−Q(dP/dt) + (dP/dt)q̂ − (dQ/dt)p̂
]
. (42)

Applying equations (15) and (16), we can write the Schrödinger equation as

ih̄
d

dt
|ψ+(Q, P, t)〉 =

[
dS

dt
+

dP

dt

(
Q̆+ − Q

)
− dQ

dt
P̆+ + H

+

(
Q̆+, P̆+, t

)] |ψ+(Q, P, t)〉 (43)

where Q̆+ = q + Q̆, P̆+ = p + P̆ , and q and p are given by (14).
Until now all of the above expressions are valid for every set of free parameters {S,Q,P }.

Note that the right-hand side of (43) is an expansion of the form α1̆ + βQ̆ + γ P̆ + · · · . Thus,
we can simplify (43) by choosing {S,Q,P } so that coefficients α, β and γ vanish for all time
t . In this way, we obtain generalized Hamilton equations,

dQ/dt = K10(Q, P, t) dP/dt = −K01(Q, P, t) (44)

and S(Q,P, t) is determined by solving the time-dependent quantum Hamilton–Jacobi
equation

∂S/∂t + K(Q,P, t) = 0 (45)

where ∂/∂t := (∂/∂t)(Q,P ) is the time rate of change at a fixed phase-space point (Q, P ).
We return to the Schrödinger equation (43), which reduces to

ih̄
d

dt
|ψ+(Q, P, t)〉 = D

+

(
Q,P, Q̆, P̆ , t

) |ψ+(Q, P, t)〉 (46a)

with initial state at t0 given by

|ψ+(Q0, P0, t0)〉 := exp

[
− i

h̄
S(Q0, P0, t0)

]
D̂
+
(Q0, P0) |ψ(t0)〉. (46b)

Here, the system’s quantum dynamics along the phase-space trajectory (Q(t), P (t)) is
determined by

D
+

(
Q,P, Q̆, P̆ , t

)
:= H

+

(
Q̆+, P̆+, t

)− K(Q,P, t) − h̄L(Q,P, Q̆, P̆ , t) (47)

which can be expanded as (36), provided that contributions of multi-indices (ν, µ) = (0, 0)
and (ν, µ) = (0, 1), (1, 0) are excluded. Here,

h̄L(Q,P, Q̆, P̆ , t) := K10(Q, P, t)P̆ + K01(Q, P, t)Q̆ (48)

is the generalized Liouville operator. Note that as consequence of restriction ν +µ �= 0, 1, the
first term in (47) is of the order of h̄2. Furthermore, from (36) and (47) we conclude that for
a standard Hamiltonian, D

+

(
Q,P, Q̆, P̆ , t

)
assumes a simple form lacking mixed-derivative

products of position and momentum, P̆ νQ̆µ.
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5.2. Time-independent parameters Q and P

A second alternative to deal with (43) is to assume that phase-space parameters Q and P are
time-independent, i.e. dQ/dt = dP/dt = 0. In this case, starting from (43) we obtain (45),
but instead of (46a), we get the following motion equation

ih̄(∂/∂t) |ψ+(Q, P, t)〉 = [
h̄L
(
Q,P, Q̆, P̆ , t

)
+ D

+

(
Q,P, Q̆, P̆ , t

)] |ψ+(Q, P, t)〉 (49a)

with initial condition, see (41),

|ψ+(Q, P, t0)〉 := exp

(
− i

h̄
S(Q, P, t0)

)
D̂
+
(Q, P ) |ψ(t0)〉. (49b)

Note that although we are working in this subsection with time-independent parameters
Q and P , the generalized Liouville operator (48) can be written as

h̄L(Q,P, Q̆, P̆ , t) := (dQ/dt)P̆ − (dP/dt)Q̆ (50)

where dQ(t)/dt and dP(t)/dt are given by the generalized Hamilton equations (44). As ∂/∂t
denotes the time rate of change at a fixed phase-space point, (d/dt) is the time rate of change
seen by an observer moving with (Q(t), P (t)), along the phase-space trajectory. The chain
rule yields the following relationship between them:

ih̄d/dt = ih̄∂/∂t − h̄L(Q,P, Q̆, P̆ , t). (51)

Thus, quantum dynamics in phase space can be described by (46a) and (46b) or by (49a)
and (49b). These are exact equations that closely resemble classical statistical mechanics.
However, instead of involving probability distributions, they use kets |ψ+(Q, P, t)〉,
parametrized by (Q, P ) phase-space points.

5.3. Classical limit

Let us comment about the classical limit of this treatment. Although the following argument
has general validity, we use a specific example for comprehension purposes. Let us consider
the Hamilton operator (31) and the symbol H+(q, p, t) given by (40b), which is a power series
in h̄. Since (47) and (48) relate the phase-space operator D

+
with the symbol H+(q, p, t), the

first term in D
+

is due to multi-indices (ν, µ) = (2, 0), (0, 2), (1, 1). They provide contributions

of the order of h̄2 × H+(q, p, t). Although H+(q, p, t) is h̄ dependent, we obtain low-order
contributions in h̄ from (45a) by disregarding D

+
; that is,

ih̄(∂/∂t)
∣∣ψcl

+ (Q, P, t)
〉 = h̄L(Q,P, Q̆, P̆ , t)

∣∣ψcl
+ (Q, P, t)

〉
(52)

is the quantum-mechanical equation of motion reduced to order h̄0 and with initial state (49b)
at time t0. Along the phase-space trajectory, equation (52) is equivalent to

d

dt

∣∣ψcl
+ (Q, P, t)

〉 = 0 (53)

with initial state (46b) at time t0. We obtain the solutions of the generalized Liouville equation
(52) by solving the underlying ordinary differential equations (44), because it is a partial
differential equation of first order in the variables (Q, P, t). Note that, in the particular case

of a standard Hamiltonian,
0
T (p, t) +

1
V (q, t), the symbol H+(q, p, t) and the generalized

Liouville operator L(Q,P, Q̆, P̆ , t) are h̄ independent. In the general case (40b), the symbol
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H+(q, p, t) is h̄ dependent, but if a further approximation is desired we can let h̄ → 0 in (40b)
to obtain an h̄-independent symbol.

Equations (52) and (53) describe low-order dynamics in h̄ (namely, h̄0). They are the
quantum analogue of the well known classical Liouville equation [23]. Thus, in equations (46a)
and (49a), the operator D

+

(
Q,P, Q̆, P̆ , t

)
is responsible for the quantum effects of order h̄n,

n � 1.

6. Coherent-state representation

6.1. definition

Now we consider phase-space wavefunctions defined by Glauber coherent states [24, 25] and
denoted here as |Z(Q∗, P ∗)〉. Z(Q∗,±P ∗) := κ0Q

∗ ± iχ0P
∗ defines an arbitrary complex

number, where κ0 := (
√

2q0)
−1, χ0 := (

√
2p0)

−1, q0 and p0 are position and momentum
units restricted by the condition q0p0 = h̄. Parameters Q = QR + iQI and P = PR + iPI may
be complex. From here on we use auxiliary functions

M(Q) := (√
πq0

)−f/2
exp

[− (κ0Q)2
]

(54a)

M̃(P ) := (√
πp0

)−f/2
exp

[− (χ0P)2
]

(54b)

with Q2 := Q2
1 + Q2

2 + · · · + Q2
f and P 2 := P 2

1 + P 2
2 + · · · + P 2

f .
We represent the normalized ground state of the f -dimensional harmonic oscillator, also

called the vacuum state, by |0〉 := |Z = 0〉 = |n = 0〉. Thus, we define state |Z(Q∗, P ∗)〉 by
the application of Weyl operator to this vacuum state, obtaining∣∣Z(Q∗, P ∗)

〉
:= D̂(Q∗, P ∗)|0〉

= [
(πh̄)f/2 M

(
Q∗) M̃ (

P ∗)]1/2
∞∑
n=0

1√
n!

(
κ0Q

∗ + iχ0P
∗)n |n〉 (55a)

where we have used the relations q̂ = q0(â
+ + â)/

√
2, p̂ = ip0(â

+ − â)/
√

2 and properties of
annihilation and creation operators, â and â+. Adjoint equation of (55a) is given by〈
Z(Q∗, P ∗)

∣∣ = 〈0| D̂(−Q,−P)

= [
(πh̄)f/2 M(Q)M̃(P )

]1/2
∞∑
n=0

1√
n!

(κ0Q − iχ0P)n 〈n|. (55b)

In accordance with equations (1a) and (1b) and (15), let us introduce kets and bras |Q,P 〉±
and ±〈Q,P |, which differ from |Z(Q∗, P ∗)〉 and 〈Z(Q∗, P ∗)| by phase factors:

±〈Q,P | := exp

(
∓ i

h̄
S(Q, P, t)

)
〈0| D̂± (Q, P )

= exp

(
∓ i

h̄
S(Q, P, t)

)
w
±

(
Q,

1

2
P

) 〈
Z(Q∗, P ∗)

∣∣ (56a)

|Q,P 〉± := exp

(
± i

h̄
S∗(Q, P, t)

)
D̂∓ (−Q∗,−P ∗)|0〉

= exp

(
± i

h̄
S∗(Q, P, t)

)
w
∓

(
Q∗,

1

2
P ∗
) ∣∣Z(Q∗, P ∗)

〉
. (56b)
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Thus, an arbitrary quantum-mechanical state |ψ(t)〉 admits coherent-state representations
defined by scalar products

ψ±(Q, P, t) := ±〈Q,P |ψ(t)〉 = exp

[
∓ i

h̄
S(Q, P, t)

]
〈0| D̂± (Q, P ) |ψ(t)〉 (57a)

= exp

[
∓ i

h̄
S(Q, P, t)

]
w
±

(
Q,

1

2
P

)[
(πh̄)f/2 M(Q)M̃(P )

]1/2

×
∞∑
n=0

1√
n!

(κ0Q − iχ0P)n 〈n|ψ(t)〉. (57b)

Here 〈n|ψ(t)〉 is the scalar product of the state |ψ(t)〉 and eigenstate |n〉 of the f -dimensional
harmonic oscillator. Results in (57a) and (57b) are standard [24–26], except for the presence
of phase-space factors exp [∓iS(Q,P, t)/h̄]w± (Q, P/2). These are required to correctly

represent in phase space the eigenvalue and Schrödinger equations, when applying the herein
presented ‘classicalization’ procedure. Here, we point out that (57a) and (1b) lead to the
relation

exp

(
− i

h̄
S(Q, P, t)

)
ψ−(Q, P, t) = w

− (Q, P ) exp

(
i

h̄
S(Q, P, t)

)
ψ+(Q, P, t). (58)

The expectation value of the density operator ρ̂(t) = |ψ(t)〉 〈ψ(t)| in the coherent
state |Z(Q∗, P ∗)〉 gives the Husimi function, ρ(Q,P, t) := 〈Z(Q∗, P ∗)| ρ̂(t) |Z(Q∗, P ∗)〉.
Then, we can use (56a), (56b) and (57a), to write the Husimi function as ρ(Q,P, t) =
exp (±;(Q,P, t)) |ψ±(Q, P, t)|2, with

;(Q,P, t) := (i/h̄)
[
S(Q,P, t) − QP/2 − (S(Q,P, t) − QP/2)∗

]
.

The factor exp (±;(Q,P, t)) takes the value one except in the case of complex functions S,
Q or P .

6.2. Application to the Schrödinger equation

Multiplying both sides of (36) with 〈0|, we obtain

ψ+(Q, P, t) := 〈0|ψ+(Q, P, t)〉 = exp [−(i/h̄)S(Q,P, t)] 〈0| D̂
+
(Q, P ) |ψ(t)〉. (59)

Similarly, motion equations (46a) and (49a) can be written in coherent-state representations
by substituting: |ψ+(Q, P, t)〉 → ψ+(Q, P, t). Thus, equation (49a) becomes

ih̄(∂/∂t)ψ+(Q, P, t) = [
h̄L
(
Q,P, Q̆, P̆ , t

)
+ D

+

(
Q,P, Q̆, P̆ , t

)]
ψ+(Q, P, t) (60)

with initial state ψ+(Q, P, t0) at time t0.

6.3. Evaluation of matrix elements

Now we are interested in evaluating 〈ϕ(t)| 1̂F
+
(q̂, p̂, t) |ψ(t)〉 for arbitrary operators of the

form (8a) or (9). The unity operator 1̂ admits a resolution in terms of coherent states |Q,P 〉+:

1̂ = (2πh̄)−f

∫
dQ dP |Q,P 〉+ exp

[
− i

h̄
S(Q, P, t)

]
〈0| D̂

+
(Q, P ). (61a)

So, using (61a), (10a), (15) and (57a), we obtain

〈ϕ(t)|F
+
(q̂, p̂, t) |ψ(t)〉 = (2πh̄)−f

∫
dQ dP ϕ+

∗(Q, P, t)F
+

(
Q̆+, P̆+, t

)
ψ+(Q, P, t).

(61b)
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6.4. Application to the eigenvalue equation

Let us consider the eigenvalue equation of an arbitrary operator F
+
(q̂, p̂, t). Applying

exp [−iS(Q,P, t)/h̄] 〈0| D̂
+
(Q, P ) to both sides of F

+
(q̂, p̂, t) |ψ〉 = E |ψ〉, and using (10a)

and (15), we convert the eigenvalue equation to

F
+

(
Q̆+, P̆+

)
ψ+(Q, P ) = Eψ+(Q, P ). (62)

Consider, for instance, eigenvalue equation(
κ0q̂ + iχ0p̂

) ∣∣Z(Q′′, P ′′)
〉 = Z(Q′′, P ′′)

∣∣Z(Q′′, P ′′)
〉
.

It can be written as(
κ0Q̆+ + iχ0P̆+

)
ψ+(Q, P ;Q′′, P ′′) = Z(Q′′, P ′′)ψ+(Q, P ;Q′′, P ′′)

with

ψ+(Q, P ;Q′′, P ′′) = exp [−iS(Q,P, t)/h̄] 〈0| D̂
+
(Q, P )

∣∣Z(Q′′, P ′′)
〉

P̆+ = ∂S/∂Q + P̆ , and Q̆+ = Q − ∂S/∂P + Q̆. Note that relations (55a) and

D̂
(
Q′, P ′) D̂ (

Q′′, P ′′) = exp

[
− i

2h̄

(
Q′P ′′ − P ′Q′′)] D̂ (

Q′ + Q′′, P ′ + P ′′) (63)

are useful to express ψ+(Q, P ;Q′′, P ′′) as a scalar product of two Glauber’s coherent states.

6.5. Wavefunctions in position and momentum space

In this subsection we consider the relation between the coherent-state representation and
wavefunctions in position and momentum space. Since the unity operator 1̂ admits a resolution
in terms of position eigenstates |q〉, with q̂ |q〉 = q |q〉, and 〈q + Q| = 〈q| exp

(
(i/h̄)Qp̂

)
, this

completeness relation allows one to write (57a) as

ψ+(Q, P, t) = exp

(
− i

h̄
S(Q, P, t)

)
〈0| D̂

+
(Q, P ) |ψ(t)〉

= exp

(
− i

h̄
S(Q, P, t)

)∫
dq w

− (q, P )M(q)ψ (q + Q, t) (64)

where ψ(q, t) := 〈q|ψ(t)〉 is the position-space wavefunction and 〈q |Z = 0〉 = M(q). By
using the Taylor series expansion of ψ(q + Q, t), we obtain

ψ+(Q, P, t) = exp

(
− i

h̄
S(Q, P, t)

)
(2πh̄)f/2

∞∑
m=0

1

m!
ψ(m)(Q, t)J̃m(P ) (65)

with ψ(m)(Q, t) := (∂/∂Q)m ψ(Q, t), and

J̃m(P ) := (2πh̄)−f/2
∫

dq w
− (q, P )M(q)qm

= (ih̄∂/∂P )m J̃0(P ) = (−iq0/
√

2
)m

Hm (χ0P) M̃(P ) (66)

where Hm(y) are Hermite polynomials and M̃(p) = 〈p|Z = 0〉 is given by (54b). As
consequence of (65) and orthonormality of Hermite polynomials, we find the derivatives of
position-space wavefunction (η = 0, 1, 2, . . . )

ψ(η)(Q, t) = (
2
√
π p0

)−f/2 (−i
√

2 q0
)−η

× (2πh̄)−f/2
∫

dP exp

(
i

h̄
S(Q, P, t)

)
ψ+(Q, P, t)Hη (χ0P). (67)
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Similarly, by using the eigenkets of momentum operator p̂, p̂ |p〉 = p |p〉, we obtain from
the second equation (57a) the expansion

ψ−(Q, P, t) = exp

(
i

h̄
S(Q, P, t)

)
(2πh̄)f/2

∞∑
m=0

1

m!
ψ̃(m)(P, t)Jm(Q) (68)

with ψ̃(P ) := 〈p |ψ(t)〉 , and

Jm(Q) = (
ip0/

√
2
)m

Hm (κ0Q)M(Q). (69)

The derivatives of momentum-space wavefunction are given by (η = 0, 1, 2, . . .)

ψ̃(η)(P , t) = (
2
√
π q0

)−f/2(
i
√

2p0
)−η

× (2πh̄)−f/2
∫

dQ exp

(
− i

h̄
S(Q, P, t)

)
ψ−(Q, P, t)Hη (κ0Q). (70)

Note that we can determine matrix elements by using the position completeness relation
to write (see (61b))

〈ϕ(t)|F
+
(q̂, p̂, t) |ψ(t)〉 =

∫
dQϕ∗(Q, t) F

+

(
Q, P̆ , t

)
ψ(Q, t) (71)

and by employing (67) to evaluate the Q-derivatives of wavefunction ψ(Q, t). A similar
relation is obtained by using momentum completeness relation and (70).

6.6. Squeezed representation

At this point some comments concerning the relation of present method with Gaussian
semiquantal dynamics are in order. Let us introduce the squeeze operator

@̂(β) = @
(
q̂, p̂, β

)
:= exp

[
1

2

(
β â+2 − β∗â2

)]
(72a)

@̂+(β) = @̂−1(β) = @̂ (−β) (72b)

where, for one degree of freedom, the squeeze parameter β is a complex number. The squeezed

state is defined as [13]: |Z(Q∗, P ∗), β〉 := D̂(Q∗, P ∗)
A

@(β)|0〉.
For a system with f degree of freedom, we could consider instead of (41) the squeezed

transformation

|ψ@(Q,P, t)〉 := exp

(
− i

h̄
S(Q, P, t)

)
D̂
+
(Q, P ) @

(
q̂, p̂, β

) |ψ(t)〉 (73)

where @
(
q̂, p̂, β

)
denotes a suitable product of squeeze operators, and β = (β1, β2, . . . , βf ) is

a set off time-dependent parameters. By following a similar procedure to that of subsection 5.1
we could fix the set of free parameters {S,Q,P, β} and obtain equations of motion for
parameters β, besides equations (44) and (45). This result indicates that the present method is
related to the squeezed state approach (semiquantum dynamics). This theory leads to a set of
Hamilton equations describing expectations values and quantum fluctuations in an extended
phase space [14–17].

In analogy with (59), multiplying both sides of (73) with 〈0|, we obtain

ψ@(Q,P, t) := 〈0|ψ@(Q,P, t)〉 = exp

(
− i

h̄
S(Q, P, t)

)
〈0| D̂

+
(Q, P )@

(
q̂, p̂, β

) |ψ(t)〉

= exp

(
− i

h̄
S(Q, P, t)

)
@
+
(Q, P, Q̆, P̆ , β) 〈0| D̂

+
(Q, P ) |ψ(t)〉
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where we use the intertwining relation (10a) to change from Hilbert-space operator @
(
q̂, p̂, β

)
to phase-space operator @

+
(Q, P, Q̆, P̆ , β). Finally, we get from (57a) and (15) that

wavefunction ψ@(Q,P, t) is related to wavefunction (55) by transformation

ψ@(Q,P, t) = @
+
(Q̆+, P̆+, β)ψ+(Q, P, t) (74)

with Q̆+ and P̆+ given by (13a) and (13b).

7. Examples

7.1. Dynamics of a free particle

Let us consider in full detail the case of a free particle of mass m and Hilbert-space Hamilton
operator H(q̂, p̂, t) = p̂2/(2m). According to (16) or (31), the phase-space operator
associated with H(q̂, p̂, t) is H

+

(
Q̆+, P̆+, t

) = P̆+
2/(2m), where P̆+ is giving by (13b) and

(14). In this step let us assume that S(Q,P, t) is an arbitrary smooth function.
Now, by using P̆+ = p(Q,P, t) + P̆ ,

[
Q, P̆

] = ih̄1̆, and P̆ (∂S/∂Q) = (∂S/∂Q) P̆ −
ih̄
(
∂2S/∂Q2

)
, we write H

+

(
Q̆+, P̆+, t

)
in the form (37):

H
+

(
Q̆+, P̆+, t

) = 1

2m

[
(∂S/∂Q)2 − ih̄∂2S/∂Q2

]
+

1

m
(∂S/∂Q) P̆ +

1

2m
P̆ 2. (75)

By comparing this expression with (37) we identify K(Q,P, t), K10(Q, P, t), K01(Q, P, t)

and K20(Q, P, t).
Now, we recall that an acceptable physical function S(Q,P, t) must satisfy equation (45).

Substituting the ansatz S(Q,P, t) = −s(t) + y(t)Q into (45), we find that at every phase-
space point (Q, P ) the formula (45) is satisfied, if y(t) is a time-independent constant (i.e.
y(t) = P0). That is, S(Q,P, t) = −s(t)+P0Q, with s(t) = (t − t0)P

2
0 /(2m). The dynamical

equations (44) become the standard Hamilton equation and, therefore, a phase-space trajectory
is described by Q = Q0 + (P0/m)(t − t0) and P = P0.

We are now interested in the quantum dynamics of the free particle as seen by an observer
at a fixed phase-space point (Q, P ). We can use either the formal equation (49a) and (49b)
or the coherent state representation (60), with initial state ψ+(Q, P, t0) at time t0 (see (49b)).
Equation (60) becomes

ih̄
∂

∂t
ψ+(Q, P, t) =

[
P0

m
P̆ +

1

2m
P̆ 2

]
ψ+(Q, P, t) (76)

and one can immediately write the solution as

ψ+(Q, P, t) = exp

[
− i

h̄

(
P0

m
P̆ +

1

2m
P̆ 2

)
(t − t0)

]
exp

(
− i

h̄
P0Q

)
〈0| D̂

+
(Q, P ) |ψ(t0)〉

(77)

where we have used S(Q,P, t0) = P0Q. We can see from (64) that 〈0| D̂
+
(Q′, P ) |ψ(t0)〉 =

exp(iS(Q′, P , t0)/h̄)ψ+(Q
′, P , t0), where ψ+(Q, P, t0) is the initial phase-space state.

The phase-space wavefunction (77) can be calculated by recalling the identities
[27, exercise 7.33]

F(Q) =
∫ ∞

−∞
F(Q′)δ(Q′ − Q) dQ′ (78a)

δ(Q′ − Q) = (2
√
πσ)−1 exp

(−σ∂2/∂Q2
)

exp
[−(Q′ − Q)2/(4σ)

]
(78b)
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where σ is a parameter and F(Q) a function. Thus, we obtain

exp
(
σ∂2/∂Q2

)
F(Q) = (2

√
πσ)−1

∫ ∞

−∞
exp

[−(Q′ − Q)2/(4σ)
]
F(Q′) dQ′. (78c)

For the calculation of (77), we also need to take advantage of the identity F(Q − ζ ) =
exp (−ζ∂/∂Q)F(Q), where ζ is constant with respect to Q. Finally, writing ζ(t) =
(P0/m) (t − t0) and q2

0σ(t) = ih̄ (t − t0) /(2m), equation (77) assumes the form

ψ+(Q, P, t) = 1

2
√
πq2

0σ(t)

×
∫ ∞

−∞
exp

[
−
(
Q′ − Q0

)2

4q2
0σ(t)

]
exp

(
− i

h̄
P0Q

′
)

〈0| D̂
+
(Q′, P0) |ψ(t0)〉 dQ′ (79)

with Q0 = Q − (t − t0)P/m, and P0 = P . Using (64), it holds that 〈0| D̂
+
(Q′, P ) |ψ(t0)〉 =

exp(iS(Q′, P , t0)/h̄)ψ+(Q
′, P , t0), with S(Q′, P , t0) = P0Q

′, and ψ+(Q
′, P , t0) the initial

phase-space state. Making use of delta-function representation,

δ(x − y) = lim
a→∞

√
a

πh̄i
exp

(
ia

h̄
(x − y)2

)
(80)

in the limit t → t0, equation (79) reduces to initial state ψ+(Q, P, t0).
Until now we have considered the quantum dynamics as seen by an observer at a fixed

phase-space point (Q, P ). The quantum dynamics as seen by an observer moving with
(Q(t), P (t)), along the phase-space trajectory, is determined by solving the equation of motion
(46a) and (46b). The solution of (46a) and (46b) is given by (79) provided we follow the
phase-space trajectory: Q → Q = Q0 + ζ(t) and P → P = P0. After this substitution,
the right-hand side of (79) becomes a function of the initial conditions, (Q0, P0). However,
due to the inverse relation (Q0, P0) = (Q − ζ(t), P ), the observer moving with (Q(t), P (t))

recovers (79) and sees the phase-space wavefunction as a function of Q(t), P(t), and t .
Using (79) and (67), with η = 0, we may derive the wavefunction in position-space. After

using the identities,

〈0| D̂
+
(Q′, P0) |ψ(t0)〉 =

∫
dq exp

(
− i

h̄
P0q

)
M(q)ψ

(
q + Q′, t0

)
(81a)

1

2πh̄

∫
dP0 exp

(
− i

h̄
qP0

)
= δ(q) (81b)

we obtain the equation

ψ (Q, t) =
∫

dQ′ K(Q, t |Q′, t0)ψ(Q′, t0). (81c)

The propagator K(Q, t |Q′, t0) is given by

K(Q, t |Q′, t0) := 1

2
√
πq2

0σ(t)

exp

(
− (Q′ − Q)2

4q2
0σ(t)

)
(81d)

and it is equivalent to the standard one [28, p 112].
In a similar manner, using (58), (70), (79), and the relation∫

dQ′ exp

(
− i

h̄
P0Q

′
)

〈0| D̂
+
(Q′, P0) |ψ(t0)〉 = 2πh̄

(√
πp0

)−1/2
ψ̃(P0, t0) (82a)
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we obtain momentum-space wavefunction

ψ̃ (P, t) = exp

(
− i

h̄

P 2

2m
(t − t0)

)
ψ̃ (P, t0). (82b)

7.2. Particle in a time-dependent linear potential

Consider the Hilbert-space Hamilton operator H(q̂, p̂, t) = p̂2/(2m) − F(t)q̂. According to
(16), or (31), and (13a) and (13b), we obtain

H
+

(
Q̆+, P̆+, t

) = 1

2m

[(
∂S

∂Q

)2

− ih̄
∂2S

∂Q2

]
− F(t)

(
Q − ∂S

∂P

)

+
1

m

∂S

∂Q
P̆ − F(t)Q̆ +

1

2m
P̆ 2. (83)

Using the ansatz S(Q,P, t) = −s(t)− x(t)P + y(t)Q one sees that equation (45) is satisfied
at each phase-space point (Q, P ), if x(t) = x0. Generalized Hamilton equations (44)
become dQ/dt = (∂S/∂Q)/m = y(t)/m, dP/dt = F(t). We fix y0 = y(t0) as the
initial impulse (y0 = P0) in order to obtain Q and P as a Hamilton equations solution:
Q = Q0 + (P0/m)(t − t0) + u(t)/m, P = P0 + g(t), where Q0 = Q(t0) and P0 = P(t0) are
the initial conditions. We choose constant x0 as x0 = 0 so that Q, P and S(Q,P, t) reduce to
the equations of a free particle, in the case F(t) = 0 (example 7.1). All together, we have

y(t) = P0 + g(t) ds(t)/dt = y2(t)/(2m) (84a)

s(t) = t − t0

2m
P 2

0 +
1

m
u(t)P0 +

1

2m
v(t) (84b)

S(Q,P, t) = −s(t) + y(t)Q (84c)

g(t) :=
∫ t

t0

F(t ′) dt ′ u(t) :=
∫ t

t0

g(t ′) dt ′ (84d)

mχ(t) := −
∫ t

t0

dt ′(t ′ − t0)F (t ′) = u(t) − (t − t0)g(t) (84e)

v(t) :=
∫ t

t0

g2(t ′) dt ′ = g(t)u(t) − 2mγ (t), 2mγ (t) :=
∫ t

t0

dt ′F(t ′)u(t ′). (84f)

We now use equations (60) and (83) to describe the quantum dynamics by the equation

ih̄
∂

∂t
ψ+(Q, P, t) =

[
y(t)

m
P̆ − F(t)Q̆ +

1

2m
P̆ 2

]
ψ+(Q, P, t). (85)

We can obtain the solution of (85) by applying the Magnus method after noting that
[Q̆, y(t)] = ih̄1̆. However, equation (85) can be easily solved by using the phase-space
transformation (Q, P ) ↔ (Q0, P0) and the relations P̆ = P̆0, Q̆ = Q̆0 + (t − t0)P̆0/m, where
Q̆0 = ih̄∂/∂P0 and P̆0 = −ih̄∂/∂Q0. Similarly, if we denote by ∂/∂0t := (∂/∂t)(Q0,P0) the
time rate of change at a fixed phase-space point (Q0, P0), and use the chain rule, we obtain
ih̄∂/∂t = ih̄∂/∂0t+[P − (t − t0)F (t)] P̆0/m−F(t)Q̆0. In this way (85) simplifies drastically:
ih̄∂ψ+(Q, P, t)/∂0t = P̆ 2

0 /(2m)ψ+(Q, P, t). The solution of this equation is given by

ψ+(Q, P, t) = exp

(
− i

h̄

t − t0

2m
P̆ 2

0

)
w
− (Q0, P0) 〈0| A

D
+
(Q0, P0) |ψ(t0)〉 (86a)

= 1

2
√
πq2

0σ(t)

∫ ∞

−∞
dQ′ exp

(
−
(
Q′ − Q0

)2

4q2
0σ(t)

)
w
− (Q′, P0) 〈0| A

D
+

(
Q′, P0

) |ψ(t0)〉

(86b)
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with q2
0σ(t) := ih̄ (t − t0) /(2m), Q0 = Q − (t − t0)P/m − χ(t) and P0 = P − g(t).

The propagator K(Q, t
∣∣Q′, t0 ) and the momentum wavefunction become

K(Q, t
∣∣Q′, t0 ) = 1

2
√
πq2

0σ(t)

exp

(
i

h̄

(
g(t)Q − v(t)

2m

))

× exp

(
− (Q − u(t)/m − Q′)2

4q2
0σ(t)

)
(87)

ψ̃(P, t) = exp

(
i

h̄

(
1

2
χ(t)g(t) + γ (t)

))
exp

(
− i

h̄

[
t − t0

2m
P 2 + χ(t)P

])
ψ̃ (P − g(t), t0).

(88)

For the simple case of a particle of mass m in a time-independent potential −F q̂, where F is
a constant, the propagator and momentum wavefunction reduce to standard results:

K(Q, t
∣∣Q′, t0

) =
√

m

2πh̄iτ
exp

[
i

h̄

(
m

2τ
(Q − Q′)2 +

Fτ

2
(Q + Q′) − F 2τ 3

24m

)]
(89)

ψ̃(P, t) = exp

[
− i

h̄

P 3 − (P − F τ)3

6mF

]
ψ̃ (P − F τ, t0) (90)

where τ = t − t0.

7.3. Harmonic oscillator

For this system Ĥ = H(q̂, p̂) = p̂2/(2m) + (mω2/2)q̂2, and

H
+

(
Q̆+, P̆+, t

) = 1

2m

[(
∂S

∂Q

)2

− ih̄
∂2S

∂Q2

]
+

1

2
mω2

[(
Q − ∂S

∂P

)2

− ih̄
∂2S

∂P 2

]

+
1

m

∂S

∂Q
P̆ + mω2

(
Q − ∂S

∂P

)
Q̆ +

1

2m
P̆ 2 +

1

2
mω2Q̆2. (91)

Equation (45) for the function S(Q,P, t) can be solved using the following ansatz:

S(Q,P, t) = −s(t) + y(t)Q − 1

2
m�(t)Q2. (92)

In this way we have the equations d�/dt = �2 + ω2, dy/dt = �(t)y, and ds/dt =(
y2 + ih̄m�

)
/(2m). The dynamical frequency �(t) is given by

�(t) = ω tan (ω(t − t0) + σ0) (93a)

where τ = t − t0, and the phase σ0 fixes the initial value of �(t0) as ω tan σ0. By noting the
relation ∫ t

t0

dt ′ �(t ′) = − ln

(
cos(wτ + σ0)

cos σ0

)

it then follows that

y(t) = y0 cos σ0

cos(ωτ + σ0)
(93b)

s(t) = (y0 cos σ0)
2

2mw
(tan(ωτ + σ0) − tan σ0) − 1

2
ih̄ ln

(
cos(ωτ + σ0)

cos σ0

)
. (93c)
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The generalized Hamilton equations become dQ/dt = y(t)/m − �(t)Q, dP/dt =
−mω2Q, and their solutions are given by

Q(t) =
(
Q0 − y0 cos σ0 sin σ0

mw

)
cos(ωτ + σ0)

cos σ0
+
y0 cos σ0

mw
sin(ωτ + σ0) (94a)

P(t) = P0 − mw

(
Q0 − y0 cos σ0 sin σ0

mw

)
sin(wτ + σ0) − sin σ0

cos σ0

+y0 cos σ0 (cos(wτ + σ0) − cos σ0) (94b)

with Q(t0) = Q0 and P(t0) = P0. Functions Q(t) and P(t) depend on the parameters y0 and
σ0, and, in general, they differ from the solution of Hamilton’s canonical equations. However,
they can also be cast in the form

Q(t) = Q0 cos(wτ) +
1

mw

(
y0 cos2 σ0 − (mwQ0 − y0 cos σ0 sin σ0) tan σ0

)
sin(wτ) (95a)

P(t) = P0 − (
y0 cos2 σ0 − (mwQ0 − y0 cos σ0 sin σ0) tan σ0

)− mwQ0 sin(wτ) (95b)

+
(
y0 cos2 σ0 − (mwQ0 − y0 cos σ0 sin σ0) tan σ0

)
cos(wτ).

Thus, equations (95a) and (95b) reduce to the standard form describing the classical
dynamics of a harmonic oscillator if y0 and σ0 satisfy the relation y0 cos2 σ0 − (mwQ0 −
y0 cos σ0 sin σ0) tan σ0 = P0. In other words, in order to obtain the familiar form, Q =
Q0 cos(wτ) + P0 sin(wτ)/(mw) and P = −mwQ0 sin(wτ) + P0 cos(wτ), we fix y0 as
y0 = P0 + mwQ0 tan σ0. The value σ0 = 0 is a good choice for the parameter σ0, because in
this case y0 = P0, �(t0) = 0 and S(Q,P, t0) = P0Q.

The Schrödinger equation (60) takes the form

ih̄
∂

∂t
ψ+(Q, P, t) =

[
(y(t)/m − �(t)Q)P̆ + mω2QQ̆ +

1

2m
P̆ 2 +

1

2
mω2Q̆2

]
ψ+(Q, P, t).

(96)

To solve this equation is advantageous and instructive to use the relation |ψ(t)〉 =
exp

(−(i/h̄)(t − t0)
A

H
) |ψ(t0)〉 into (59). Next, we make use of (2a) and transformations

[29]

exp
(
(i/h̄)τ Ĥ

)
A

q exp
(−(i/h̄)τ Ĥ

) = cos(ωτ)q̂ + sin(ωτ)p̂/(mω) (97a)

exp
(
(i/h̄)τ Ĥ

)
A

p exp
(−(i/h̄)τ Ĥ

) = cos(ωτ)p̂ − mω sin(ωτ)q̂ (97b)

to rewrite (59) as

ψ+(Q, P, t) = exp

(
− i

h̄
S(Q, P, t)

)
〈0| exp

(
− i

h̄
τ Ĥ

)
A

D
(
Q′, P ′) A

D
(
Q′′, P ′′) |ψ(t0)〉

(97c)

where Q′ = P sin(ωτ)/(mω), P ′ = −P cos(ωτ), Q′′ = −Q cos(ωτ) and P ′′ =
−Qmω sin(ωτ).

Using (63) and (1a) and (1b), and noting that Ĥ |0〉 = (h̄ω/2)|0〉, we obtain

ψ+(Q, P, t) = exp

(
− iωτ

2

)
exp

(
− i

h̄
S(Q, P, t)

)
exp

(
1

2

i

h̄
QP

)

×w
−

(
Q0,

1

2
P0

)
〈0| D̂

+
(Q0, P0) |ψ(t0)〉 (98a)
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where Q0 = Q cos(ωτ) − P sin(ωτ)/(mω) and P0 = P cos(ωτ) + mωQ sin(ωτ).
With (64) we obtain 〈0| D̂

+
(Q0, P0) |ψ(t0)〉 = exp (iS(Q0, P0, t0)/h̄) ψ+(Q0, P0, t0), where

S(Q0, P0, t0) = P0Q0 (with σ0 = 0), and ψ+(Q0, P0, t0) is the initial phase-space state.
Finally, from (98a) we obtain

ψ+(Q, P, t) = exp

(
− iωτ

2

)
exp

(
1

2

i

h̄
(QP − Q0P0)

)

× exp

(
− i

h̄
(S(Q, P, t) − S(Q0, P0, t0))

)
ψ+(Q0, P0, t0). (98b)

Note that in this example S(Q,P, t) is a complex function (see (92) and (93c)). The
wavefunction ψ+(Q, P, t) depends periodically on time and each phase-space point of the
initial state ψ(Q0, P0, t0) is propagated along the corresponding classical trajectory. However,
the whole Husimi function stays in its original phase-space position because there is not a force
applied to the particle.

7.4. Visualization of phase-space dynamics

We can gain a better understanding of the behaviour of the phase-space wavefunction
ψ+(Q, P, t) by considering a specific initial state. Let |ψ(t0)〉 be a coherent state |κ0q + iχ0p〉,
with mean momentum p and coordinate q. With the help of (57a) and (57b), (1a) and (1b)
and (63), we obtain for the initial phase-space wavefunctions ψ±(Q, P, t0) the relations

exp

(
± i

h̄
S(Q, P, t0)

)
ψ±(Q, P, t0) = 〈0| D̂± (Q, P ) |κ0q + iχ0p〉

= exp

(
± i

2h̄
QP

)

× exp

(
i

2h̄
(Qp − Pq)

) [
(πh̄)1/2M (Q − q) M̃ (P − p)

]1/2
(99a)

where S(Q,P, t0) = P0Q for the three examples presented in this section (set σ0 = 0 in the
case of Harmonic oscillator).

We may also use (67), (70), and (99a), to find the initial position-space and momentum-
space wavefunctions

ϕ(Q, t0) := 〈Q|ψ(t0)〉 = M (Q − q̄) exp

(
i

h̄
Qp̄

)
exp

(
− i

2h̄
q̄p̄

)
(99b)

ϕ̃(P , t0) := 〈P |ψ(t0)〉 = M̃ (P − p̄) exp

(
− i

h̄
P q̄

)
exp

(
i

2h̄
q̄p̄

)
. (99c)

In the case of a particle in a time-dependent linear potential, the phase-space wavefunction
(86b) can be written as

ψ+(Q, P, t) = 1√√
πq0 (1 + 2σ(t))

×
∫ ∞

−∞
dQ′ exp

(
−

(
Q′ − Q0

)2

2q2
0 (1 + 2σ(t))

)
exp

(
− i

h̄
P0Q

′
)
ψ(Q′, t0). (100)

In particular, if the initial state ψ(Q′, t0) is the coherent state ϕ(Q′, t0), then the phase-space
state at the later time t is

ψ+(Q, P, t) = 1√
1 + σ(t)

exp (A(Q,P, t)) (101a)
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Figure 1. Phase-space evolution of an initial coherent state which is launched in a time-independent
linear potential. The figures show three-dimensional surface plots of |ψ+(Q, P, t)|, an its contours,
at initial time t0 = 0 and at a later time t = 2. We set m = 1, q0 = p0 = 1, q = p = 0,
F(t) = F0 = 2.

where

A(Q,P, t) := − 1 + 2σ(t)

4(1 + σ(t))

(
P0 − p

p0

)2

− 1

4(1 + σ(t))

(
Q0 − q

q0

)2

− i

2h̄(1 + σ(t))
(P0 − p) [Q0 + (1 + 2σ(t))q] − i

2h̄
qp (101b)

and q2
0σ(t) := ih̄ (t − t0) /(2m), Q0 = Q − (t − t0)P/m − χ(t) and P0 = P − g(t). In the

case of a free particle, χ(t) = 0 and g(t) = 0.
Evolution of the quantum-mechanical state is described either by the function ψ+(Q, P, t)

of Q, P and t , as seen by an observer at fixed phase-space points (Q, P ), or by the
wavefunction ψ+(Q0, P0, t) := ψ+(Q(t), P (t), t) as seen by an observer moving along a
classical phase-space trajectory (Q(t), P (t)) with initial condition (Q0, P0) at time t0. Using
S(Q,P, t0) = P0Q, Q(t0) = Q0, and P(t0) = P0, we see that in the limit t → t0,
equations (101a) and (101b) reduce to the initial state (99a). We may also verify by substitution
that (101a) and (101b) are a solution of (85).

Consider the case of an initial coherent state with q = p = 0, and apply to the particle
a force F(t) = F0. Figure 1 shows three-dimensional surface plots of |ψ+(Q, P, t)|, and its
contours, at initial time t0 = 0 and at a later time t = 2. The function |ψ+(Q, P, t)| takes on



Quantum Hilbert-space and classical phase-space operators 6151

Figure 2. Phase-space evolution of an initial coherent state which is launched in a time-independent
linear potential. This figure show a three-dimensional surface plot of the argument I(Q,P, t) of
the wavefunction ψ+(Q, P, t) at time t = 2. We set m = 1, q0 = p0 = 1, q = p = 0,
F(t) = F0 = 2.

the same value along each contour. Figure 2 shows the behaviour of the argument I(Q,P, t)

of the wavefunction ψ+(Q, P, t), at time t = 2.
The time development of ψ(Q,P, t) is determined by three contributions:

(a) the initial state ψ(Q,P, t0);

(b) a classical evolution of each phase-space point of the initial state; and

(c) a quantum effect described by the complex function σ(t).

The departure of the classical behaviour is due to the time dependence of σ(t). Note that the
centre of the Husimi function moves in phase space because there is an applied external force,
F0.

8. A suitable choice of S(Q, P, t) in the case of a standard Hamiltonian

In this section we consider a particular case of a Hamiltonian (30), namely H
(
q̂, p̂, t

) =
T (p̂, t) + V (q̂, t). Functions T (p, t) and V (q, t) have Taylor expansions with coefficients
Tn(t) and Vn(t). By using (31), expansions for (q + Q̆)n and (p + P̆ )n, see (21), we obtain

H
+

(
Q̆+, P̆+, t

) =
∞∑
n=0

Tn(t)

n∑
k=0

pnkP̆
k +

∞∑
n=0

Vn(t)

n∑
k=0

qnkQ̆
k (102)

where qn,m and pn,m are functions of (Q, P, t) (see section 4.1, appendix B, and note that
X → q and Y → p).
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By comparison of (102) with (37), we obtain

K(Q,P, t) =
∞∑
n=0

Tn(t)pn,0 +
∞∑
n=0

Vn(t)qn,0 (103a)

K10(Q, P, t) =
∞∑
n=0

Tn+1(t)pn+1,1 (103b)

K01(Q, P, t) =
∞∑
n=0

Vn+1(t)qn+1,1 (103c)

D
+

(
Q,P, Q̆, P̆ , t

) =
∞∑
k=2

( ∞∑
n=0

Tn+k(t)pn+k,k

)
P̆ k +

∞∑
k=2

( ∞∑
n=0

Vn+k(t)qn+k,k

)
Q̆k. (103d)

In the following we restrict considerations to standard kinetic energy for an f -dimensional
system, T (p̂, t) = p̂2/(2m). In this case, T0 = T1 = 0, T2 = 1/(2m) and Tn = 0, for n � 3.

We may now seek a solution of the Hamilton–Jacobi equation (45) and generalized
Hamilton equations (44) in terms of a P -independent function S(Q,P, t) = S(Q, Y0, t),
where Y0 denotes a set of parameters such as the initial impulse P0 and the coordinate Q0 (see
the examples in section 7). As a consequence of this ansatz, we get (see (B2) and the last
paragraph of appendix B)

p20 = p2 + (P̆ p) = p2 − ih̄
∂2S

∂Q2
p = ∂S

∂Q
(104a)

qnk =
(
n

k

)
Qn−k for n = 1, 2, 3, . . . , and 0 � k � n. (104b)

Thus, equations (103a)–(103d) become

K(Q,P, t) = 1

2m

(
p2 − ih̄

∂2S

∂Q2

)
+ V (Q, t) (105a)

K10(Q, P, t) = p

m
,K01(Q, P, t) = ∂

∂Q
V (Q, t) (105b)

D
+

(
Q,P, Q̆, P̆ , t

) = 1

2m
P̆ 2 +

∞∑
k=2

Vk(Q, t)Q̆k (105c)

where, according to notation (17b), k!Vk(Q, t) := (∂/∂Q)kV (Q, t). Corresponding to these
results, the quantum Hamilton–Jacobi equation (45) and generalized Hamilton equations (44)
can be expressed in the form

∂

∂t
S(Q, Y0, t) +

1

2m

[
S2

1 (Q, Y0, t) − ih̄2S2(Q, Y0, t)
]

+ V (Q, t) = 0 (106)

dQ

dt
= S1(Q, Y0, t)

m

dP

dt
= −V1(Q, t) (107)

with

n!Sn(Q, Y0, t) := (∂/∂Q)n S(Q, Y0, t) = S(n)(Q, Y0, t)

and

S0(Q, Y0, t) := S(Q, Y0, t).

In the limit h̄ → 0 equation (106) reduces to the classical Hamilton–Jacobi equation. The
original kinetic energy p2/(2m) is modified by an additional contribution −ih̄S2(Q, Y0, t)/m,
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which is a classical effect due to the quantum kinetic energy p̂2/(2m). It is encouraging that
equation (106) is identical to the so-called quantum Hamilton–Jacobi equation obtained in [47]
by using the idea of quantum canonical transformations and generating functions.

A solution of generalized Hamilton equations (107) also becomes a solution of Hamilton’s
canonical equations, if the function S(Q, Y0, t) enables us to express P as a function of the
variables Q, t , and parameters Y0, by the relation P = S1(Q, Y0, t). For this purpose, it is a
necessary requirement to fix the initial condition for equation (106) as S(Q,P0, t0) = P0Q,
so that P(t0) = P0. In this way, in the examples of section 7, we obtain the standard classical
dynamics from the generalized Hamilton equations.

On the other hand, we know that the Hamilton–Jacobi equation (HJE) leads to canonical
Hamilton equations as its bicharacteristic system [48]. Since, quantum HJE (106) differs from
standard HJE by the term −ih̄2S2(Q, Y0, t), quantum effects may play a significant role in the
generalized classical dynamics of the system described by (107).

Finally, the phase-space Schrödinger equation (60) can be written in the form

ih̄
∂

∂t
ψ+(Q, P, t) =

[
P

m
P̆ +

1

2m
P̆ 2 +

∞∑
k=1

Vk(Q, t)Q̆k

]
ψ+(Q, P, t). (108)

The quantity P = S1(Q, P0, t) is the momentum of the classical particle that follows a phase-
space trajectory connecting the points (Q0, P0) and (Q, P ). Relation (108) is an infinite-order
partial differential equation if V (Q, t) does not take the form of a finite polynomial in Q.

To end this section let us note that a quantum system can also be described by the Wigner
distribution function W(Q,P, t) with time evolution ruled by [1]

ih̄
∂

∂t
W(Q,P, t) =

[
P

m
P̆ +

∞∑
k=0

1

22k
V2k+1(Q, t)Q̆2k+1

]
W(Q,P, t). (109)

Wigner functionW(Q,P, t) is real for allQ andP , and it is a bilinear form of the wavefunction,
while ψ+(Q, P, t) in (108) is complex valued and it is a phase-space probability amplitude
(see (57a)). If integrates over P , W(Q,P, t) gives the proper probabilities for the different
values of Q, and similarly with P ↔ Q. Integration of ψ+(Q, P, t) over P or Q gives the
wavefunction ψ(Q, t) or ψ̃(P, t), and its derivatives with respect to Q or P (see (67) and
(70)). To deal with (109), Lee and Scully [49] introduce an iteration scheme with an effective
potential Veff(Q, P, t) and the corresponding modified Hamilton equations, to get Wigner
trajectories along which each phase-space point (Q, P ) of the Wigner distribution moves. In
the present treatment, equations (106) and (107) define the classical dynamics autonomously,
while the quantum dynamics described by (108) is driven by the solution S(Q,P0, t) of the
quantum Hamilton–Jacobi equation (106) and the solution (Q(t), P (t)) of the generalized
Hamilton equations (107).

9. Discussion and concluding remarks

To begin these final remarks, let us summarize the main steps of the method: in the first part
of the paper, we introduced a general ‘classicalization’ procedure. For an arbitrary Hilbert-
space operator F±

(q̂, p̂, t) and an arbitrary smooth phase-space function S(Q,P, t), we found

a phase-space representation F±
(
Q̆±[S], P̆±[S], t

)
, see (8a) and (8b) and (16). Then, in the

second part of the paper, we dealt mainly with the time-dependent Schrödinger equation for a
general quantum system with Hamiltonian H(q̂, p̂, t). The steps were:
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(a) We constructed an operator H
+

(
Q̆+, P̆+, t

)
and obtained a generalized Hamiltonian

K(Q,P, t) and functions K10(Q, P, t) and K01(Q, P, t). We solved the generalized
Hamilton equations (44). Thus, we obtained a phase-space trajectory (Q(t), P (t)) that
connects the initial state (Q0, P0) to the state (Q(t), P (t)) at time t .

(b) As quantum time evolution can be described from two equivalent points of view (travelling
and fixed observers), we solved the associated quantum-mechanical equation of motion
using the most convenient one, e.g. (49a) and (49b).

(c) Finally, using (61b), we evaluated expectation values and other quantum-mechanical
quantities.

For an arbitrary quantum-mechanical system described by the Hamilton operator
H(q̂,

A

p, t), we have found a classical counterpart identified by the generalized Hamiltonian
K(Q,P, t). The classical system, however, does not obey standard Hamilton equations, but
generalized Hamilton equations (44). This result could indicate that classical mechanics is
not strictly the limiting case of quantum mechanics, but a separate and different theory, as
suggested by Casati and Chirikov [30].

Present results could also constitute an alternative for studying the quantum-classical
association, which traditionally has been analysed from different perspectives, for example:
the semiclassical trace formula [31] and its extensions [32, 33], the standard semiclassical
dynamics of Gaussian wavepackets [18], the Gaussian semiquantal dynamics [14–17],
the Wigner–Liouville formalism [1, 4, 34, 35], the de Broglie–Bohm (Hamilton–Jacobi)
formulation [19, 36].

Many papers maintain that phase-space trajectories cannot be defined for quantum
systems, because the uncertainty principle makes simultaneous specification of position
and momentum impossible. The herein introduced phase-space trajectories originate from
applying the transformation (41) to the Schrödinger equation (41) includes position-Q(t) and
momentum-P(t) free parameters that were chosen suitably afterwards (generalized Hamilton
equations (44)). We have refrained from using representation theory and have treated q̂ and p̂ as
mere non-commuting Hilbert parameters, so that the uncertainty principle remains unscathed.
This principle, which is actually a theorem about uncertainties,

;q =
√

〈ψ(t)| (q̂ − 〈q̂〉)2 |ψ(t)〉 ;p =
√

〈ψ(t)| (p̂ − 〈p̂〉)2 |ψ(t)〉
does not impose any a priori restriction on the free parameters (Q(t), P (t)). Thus, applying
this method, we are able to incorporate the classical concept of a phase-space trajectory into
quantum dynamics, despite the uncertainty principle. So, quantum evolution is partially driven
by classical evolution and no contradiction with the uncertainty principle exists.

Evolution of quantum-mechanical states can be described either by the wavefunction
ψ+(Q, P, t) at a fixed phase-space point (Q, P ), or by the wavefunction ψ+ (Q(t), P (t), t)

along the classical phase-space trajectory (Q(t), P (t)). Although this structure resembles
classical statistical mechanics, here we have wavefunctions ψ+(Q, P, t) parametrized by
(Q, P ) phase-space points instead of probability distributions, ρ(Q,P, t) � 0. Nonetheless,
the Husimi function ρ(Q,P, t) can be directly obtained from ψ+(Q, P, t) as indicated after
equation (58). In this paper we have obtained the motion equation for the amplitude of
probability ψ+(Q, P, t), instead of the equation for the time development of ρ(Q,P, t) [37].

The quantum distributions method (Wigner, Husimi, etc) provides a means to determine
the quantum-mechanical averages in terms of phase-space integration over c-number variables,
in a form quite similar to that applied to evaluate classical averages in statistical mechanics [4].
This requires the introduction of a mapping between Hilbert operators F(q̂, p̂) and classical
phase-space function F(Q,P ), which unfortunately is not well defined in some cases. In this
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paper, formulae (61b) is similar to the standard quantum-mechanical procedures for evaluating
quantum-mechanical averages, but in our case we use phase-space amplitudes. Note that, with
the help of (10a) and (15), we obtain

〈ϕ(t)| D̂
+
(Q, P ) F

+
(
A

q,
A

p, t) |ψ(t)〉 = exp

(
+

i

h̄
S(Q, P, t)

)
F
+

(
Q̆+, P̆+, t

)
× exp

(
− i

h̄
S(Q, P, t)

)
〈ϕ(t)| D̂

+
(Q, P ) |ψ(t)〉. (110)

Thus, the matrix elements of an arbitrary operator F
+
(
A

q,
A

p, t) can also be obtained by using the

above equation in the first instance and then by setting Q = P = 0.
Let us finally note that the Husimi function has been used in a number of studies of

quantum dynamical systems [38, 39], in particular, in a systematic searching for scars [40].
As expressed by Heller [41], the scars manifest themselves as an enhanced probability in
phase space, as measured by overlap with coherent states placed on the periodic orbits. This
also translates into an enhanced probability in coordinate space along the periodic orbits. In
measuring scars, there are many methods [42–44], [45, and references therein], including the
coherent state projection [46]. Note that the coherent state function contains information about
the phase of the wavefunction and is hence a more fundamental object than the Husimi function
(94).
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Appendix A

In this appendix, we outline the derivation of equations (10a), (10b) and (12a), (12b). We
differentiate expressions (7a) and (7b) with operators ±ih̄∂/∂a, and then putting a = 0, we
get (k = 0, 1, 2, . . . )

2k
F
(
P̆
)
D̂
+
(Q, P ) = D̂

+
(Q, P )

2k
F
(
p̂
)

(A1)

2k+1
F
(
Q̆
)
D̂− (Q, P ) = D̂− (Q, P )

2k+1
F
(
q̂
)

(A2)

2k
F
(
P̆
)
D̂− (Q, P ) = 2k

F
(
p̂
)
D̂− (Q, P ) (A3)

2k+1
F
(
Q̆
)
D̂
+
(Q, P ) = 2k+1

F
(
q̂
)
D̂
+
(Q, P ). (A4)

Since (1b) tells us that D̂
+
(Q, P ) = w

+
(Q, P ) D̂− (Q, P ), it is possible to rewrite expressions

(A1)–(A4) as (11a)–(11d), where we use the notation (12c).
Now, our task is to verify that the Hilbert-space operator (8a) is related to phase-space

operator (12a) through relation (10a). We begin by considering equations (11a) and (11b),
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with k = 0:
0
F−
(Q, P, P̆ ) D̂

+
(Q, P ) = D̂− (Q, P )

0
F(p̂) (A5)

1
F
+
(Q, P, Q̆) D̂− (Q, P ) = D̂

+
(Q, P )

1
F(q̂). (A6)

Then, right multiplication of (A6) by
0
F
(
p̂
)

leads to

1
F
+
(Q, P, Q̆) D̂− (Q, P )

0
F
(
p̂
) = D̂

+
(Q, P )

1
F(q̂)

0
F
(
p̂
)
.

Now, by using (A5), we obtain

1
F
+
(Q, P, Q̆)

0
F−
(Q, P, P̆ ) D̂

+
(Q, P ) = D̂

+
(Q, P )

1
F(q̂)

0
F
(
p̂
)
. (A7)

Proceeding similarly to the previous step, we consider (11a) with k = 1, and by right

multiplication with
1
F(q̂)

0
F
(
p̂
)

and using (A7), we obtain

2
F−
(Q, P, P̆ )

1
F
+
(Q, P, Q̆)

0
F−
(Q, P, P̆ ) D̂

+
(Q, P ) = D̂− (Q, P )

2
F(p̂)

1
F(q̂)

0
F
(
p̂
)
. (A8)

Now, by using (1b), as D̂− (Q, P ) = w
− (Q, P ) D̂

+
(Q, P ), equation (A8) can be written as

w
+
(Q, P )

2
F−
(Q, P, P̆ )

1
F
+
(Q, P, Q̆)

0
F−
(Q, P, P̆ ) D̂

+
(Q, P ) = D̂

+
(Q, P )

2
F(p̂)

1
F(q̂)

0
F
(
p̂
)
.

(A9)

Compare this equation with (10a), (8a), (12a) for N even (N = 2).
In general, in the above way, we obtain a sequence of equations. They can be written as

the intertwining relation (10a), where (8a) and (12a) define suitable Hilbert-space and phase-
space operators. A similar procedure with equations (11c) and (11d) leads to the intertwining
relation (10b) with definitions (8b) and (12b).

Appendix B

Consider expansion (21) of phase-space operator (X + Q̆)n. The coefficients Xnµ(Q,P, t) are
determined by using (23) and (22). We obtain

X10 = X (B1)

X20 = X2 + (Q̆X) (B2)

X30 = X3 + 3(Q̆X)X + (Q̆2X) (B3)

X40 = X4 + 6(Q̆X)X2 + 4(Q̆2X)X + 3(Q̆X)2 + (Q̆3X) (B4)

X50 = X5 + 10(Q̆X)X3 + 10(Q̆2X)X2 + 15(Q̆X)2X

+5(Q̆3X)X + 10(Q̆X)(Q̆2X) + (Q̆4X) (B5)

X60 = X6 + 15(Q̆X)X4 + 20(Q̆2X)X3 + 45(Q̆X)2X2

+15(Q̆3X)X2 + 60(Q̆X)(Q̆2X)X + 6(Q̆4X)X

+15(Q̆X)3 + 10(Q̆2X)2 + 15(Q̆X)(Q̆3X) + (Q̆5X). (B6)
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X11 = 1 (B7)

X21 = 2X (B8)

X31 = 3X2 + 3(Q̆X) (B9)

X41 = 4X3 + 12(Q̆X)X + 4(Q̆2X) (B10)

X51 = 5X4 + 30(Q̆X)X2 + 20(Q̆2X)X + 15(Q̆X)2 + 5(Q̆3X) (B11)

X61 = 6X5 + 60(Q̆X)X3 + 60(Q̆2X)X2 + 90(Q̆X)2X

+30(Q̆3X)X + 60(Q̆X)(Q̆2X) + 6(Q̆4X). (B12)

X22 = 1 (B13)

X32 = 3X (B14)

X42 = 6X2 + 6(Q̆X) (B15)

X52 = 10X3 + 30(Q̆X)X + 10(Q̆2X) (B16)

X62 = 15X4 + 90(Q̆X)X2 + 60(Q̆2X)X + 45(Q̆X)2 + 15(Q̆3X). (B17)

X33 = 1 (B18)

X43 = 4X (B19)

X53 = 10X2 + 10(Q̆X) (B20)

X63 = 20X3 + 60(Q̆X)X + 20(Q̆2X). (B21)

X44 = 1 (B22)

X54 = 5X (B23)

X64 = 15X2 + 15(Q̆X) (B24)

X55 = 1 (B25)

X65 = 6X. (B26)

Note that Xnµ reduces to standard binomial coefficients,
(
n

µ

)
Xn−µ, in the case of a P -

independent function X, that is, if X = X(Q, t). In fact, in this case, we have (Q̆µX) = 0,
for µ = 1, 2, . . . .
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